
'समानो मन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2021

CC5-MATHEMATICS

Theory of Real Functions and Introduction to Metric Spaces

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer any four questions from the following:
$3 \times 4=12$
(a) Show that the function f defined by $f(x)=\tan x$ is uniformly continuous over the closed interval $[a, b]$, where $-\frac{\pi}{2}<a<b<\frac{\pi}{2}$.
(b) Let $f(x)=\left\{\begin{array}{l}1, \text { when } x \text { is rational } \\ 0, \text { when } x \text { is irrational }\end{array}\right.$

State with reasons prove that f is discontinuous everywhere in \mathbb{R}.
(c) If f^{\prime} exists on $[0,1]$, then show by Cauchy Mean value theorem that $f(1)-f(0)=\frac{1}{2 x} f^{\prime}(x)$ has at least one solution in $(0,1)$.
(d) Prove that the series,

$$
\frac{1}{x+1}+\frac{x}{x+2}+\frac{x^{2}}{x+3}+\cdots(x>0)
$$

converges if $0<x<1$, diverges if $x \geq 1$.
(e) Prove that the intersection of two open sets in a metric space is open.
(f) Give an example to show that every Cauchy sequence may not be a convergent sequence.

GROUP-B

2. Answer any four questions from the following:
(a) State and prove Taylor's theorem with Cauchy form of remainder.
(b) (i) Let a function f of x be uniformly continuous in the bounded open interval (a, b). Prove that $\lim _{x \rightarrow a+} f(x)$ exists finitely.

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC5/2021

(ii) Prove that the function $f(x, y)=x^{2}-2 x y+y^{2}+x^{3}-y^{3}+x^{5}$ has neither a maximum nor a minimum at the origin.
(c) (i) Show that a real valued continuous function defined on a closed and bounded interval is uniformly continuous.
(ii) Determine the point of discontinuity of the function $f(x)=[\sin x]$ for all $x \in \mathbb{R}$ where $[x]$ denotes the integral part of x.
(d) Let $C[a, b]$ denote the set of all continuous function over the closed and bounded interval $[a, b]$. Consider the function $d: C[a, b] \times C[a, b] \rightarrow \mathbb{R}$ be given by

$$
d(f, g)=\left(\int_{a}^{b}(f(x)-g(x))^{2} d x\right)^{1 / 2}
$$

check whether d is a metric on $C[a, b]$ or not.
(e) (i) Let A be any non-empty subset of metric space (X, d). Prove that the function $f: X \rightarrow \mathbb{R}$ defined by $f(x)=d(x, A)$ for all $x \in A$ is continuous.
(ii) Give an example of a metric on \mathbb{R} for which the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ where $x_{n}=n$ for all $n \in \mathbb{R}$ is convergent.
(f) Expand $\log (1+x)$ for $x>-1$ in power of x, as an infinite series and mention the
\qquad interval of validity of the expansion.

GROUP-C

3. Answer any two questions from the following:
(a) (i) If f is continuous in $[a, b]$ and $f(a) \cdot f(b)<0$ then prove that there exists at least one c, where $a<c<b$ such that $f(c)=0$.
(ii) Let f be a real valued function defined over $[-1,1]$ such that
$f(x)=\left\{\begin{array}{cc}x \cos \frac{1}{x}, & \text { where } x \neq 0 \\ 0, & \text { when } x=0\end{array}\right.$
Does the Mean value theorem hold? $\lim _{x \rightarrow 0} f^{\prime}(x)$ exist? Justify your answer.
(b) (i) Show that $\frac{\tan x}{x}>\frac{x}{\sin x}$, for $0<x<\frac{\pi}{2}$
(ii) Show that the minimum value of $\frac{(2 x-1)(x-8)}{x^{2}-5 x+4}$ is greater than its maximum value.
(c) (i) Examine the differentiability of the function $f(x)=\sin [x] \forall x \in \mathbb{R}$ on \mathbb{R}.
(ii) Prove that any two real roots of the equation $e^{x} \cos x+1=0$ there is at least one real root of the equation $e^{x} \sin x+1=0$.

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC5/2021

(iii) Let X be any non-empty set and a distance function d on X is defined as

$$
\begin{aligned}
d(x, y) & =1, \text { if } x \neq y \\
& =0, \text { if } x=y .
\end{aligned}
$$

Examine the sequence $\left\{\frac{1}{n}\right\}_{n \in \mathbb{N}}$ in (X, d) is convergent or not.
(d) (i) Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ be two convergent sequences in metric space (X, d). Prove that the sequence $\left\{d\left(x_{n}, y_{n}\right)\right\}_{n \in \mathbb{N}}$ is a convergent sequence.
(ii) Give an example of function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous at $x=1,2,3$ and discontinuous all the point except $x=1,2,3$. Justify your answer.
(iii) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(x)=0$ for all $x \in \mathbb{Q}$. Prove that 3 $f(x)=0$ for all $x \in \mathbb{R}$.

